مدل سازی سطح آب زیرزمینی با تلفیق شبکه عصبی مصنوعی و موجک (مطالعه موردی: دشت شریف آباد)

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی
  • author اکرم زینی وند
  • adviser طاهر رجایی
  • Number of pages: First 15 pages
  • publication year 1393
abstract

در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در پیش¬بینی سری¬های زمانی به شدت نا ایستا و ناپایدار با مشکل مواجه می¬شوند. در این حالت اگر هیچگونه پردازشی بر روی داده¬ها صورت نگیرد شبکه قادر به پیش¬بینی و حل مسئله نخواهد بود. آنالیز موجکی را می¬توان در تجزیه یک سری زمانی مشاهده¬ای (از قبیل تراز آب زیرزمینی) به مولفه¬های مختلف، مورد استفاده قرار داد، به¬گونه¬ای که سری زمانی جدید می-تواند به عنوان ورودی شبکه عصبی استفاده شود. هدف از انجام این تحقیق مدل¬سازی تراز آب زیرزمینی حوضه آبریز شریف¬آباد با بهره¬گیری از مدل ترکیبی آنالیز موجک – شبکه عصبی می¬باشد. از داده¬های ماهانه تراز آب زیرزمینی 9 حلقه چاه مشاهده¬ای واقع در حوضه آبریز شریف¬آباد استان قم در مدل¬سازی استفاده شده است. دو معیار ریشه خطای مربع متوسط (rmse) و ضریب کارایی نش- ساتکلیف (e)، جهت مقایسه نتایج حاصل از مدل هیبرید آنالیز موجک- شبکه عصبی (wnn)، مدل رگرسیون خطی چند متغیره (mlr) و مدل شبکه عصبی مصنوعی (ann)، استفاده شده است. نتایج مطالعه نشان داده است که مدل پیشنهادی، پیش¬بینی دقیقتری را برای تراز آب زیرزمینی ماهانه، نسبت به دو مدل ann و mlr فراهم می¬نماید؛ به طوری که دقت مدل¬های ترکیبی wnn حدوداً 17 تا 60 درصد افزایش داشته است. ارزیابی نتایج مدل¬ها نشان داده است که آنالیز موجکی قادر است که نتایج مدل شبکه عصبی را تا حد قابل¬ملاحظه¬ای بهبود بخشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

مدل سازی تراز آب زیرزمینی با بهره گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (mlr)، مدل هیبرید موجک- شبکه عصبی (wnn) و شبکه عصبی مصنوعی (ann) در پیش­بینی سطح آب زیرزمینی (gwl)، بر مبنای دو معیار ریشه خطای مربع متوسط (rmse) و ضر...

full text

مدل‌سازی تراز آب زیرزمینی با بهره‌گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف‌آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیش­بینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...

full text

مدل سازی سطح آب زیرزمینی دشت شهرکرد به وسیله شبکه های عصبی مصنوعی و تئوری موجک

مدل سازی دقیق و قابل اطمینان سطح ایستابی آب زیرزمینی می تواند به استفاده ی پایدار از آب های زیرزمینی به منظور تأمین نیاز های شهری،کشاورزی و صنعتی کمک کند. امروزه سازمان ها و شرکت های مرتبط با مهندسی آب برای این منظور از مدل های عددی استفاده می کنند. از معایب این روش ها نیاز به پارامتر های متعدد، زمان بر و پرهزینه بودن آن هاست. با توجه به روابط پیچیده ی حاکم در هیدروژئولوژی و هیدرولوژی در سال ها...

15 صفحه اول

مقایسه روش های زمین آمار و شبکه عصبی مصنوعی در تخمین سطح آب زیرزمینی(مطالعه موردی: دشت نورآباد، استان لرستان)

زمینه و هدف: در بررسی مسایل ژئوهیدرولوژى، تغییرات سطح ایستابى از اهمیت بسیار بالایی برخوردار است. بنابراین تحقیق و پژوهش در تخمین نقاط فاقد اطلاعات ضروری می باشد. روش بررسی: یکی از روش های مهم در برآورد سطح ایستابی آب های زیرزمینی درون یابی است. طى چند دهه اخیر به دلیل وجود همبستگی مکانی بین مقادیریک متغیر در یک ناحیه مبانى علم زمین آمار  به خوبى گسترش یافته و توانایی هاى این شاخه از آمار در بر...

full text

خوشه‌بندی شبکه چاهک‌های مشاهده‌ای و پیش‌بینی سطح آب زیرزمینی به کمک شبکه‌های عصبی مصنوعی (مطالعه موردی: دشت مراغه)

هدف از پژوهش حاضر خوشه‌بندی چاهک‌های مشاهده‌ای آبخوان دشت مراغه (آذربایجان‌شرقی) و پیش‌بینی تراز آب زیرزمینی به‌کمک شبکه‌های عصبی مصنوعی بود. ابتدا با کمک روش خوشه‌بندی سلسله مراتبی-WARD 20 چاهک مشاهده‌ای محدوده دشت مراغه با طول دوره آماری بیش از 15 سال خوشه‌بندی شد. سپس یک خوشه با 3 زیرخوشه همگن انتخاب و نماینده هر زیرخوشه تعیین شد. با استفاده از شبکه‌های عصبی مصنوعی با ساختار پرسپترون چند لای...

full text

کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش‌بینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست)

پیش­بینی نوسانات سطح آب زیرزمینی، برای برنامه­ریزی مناسب­تر به­ویژه در مناطق خشک و نیمه خشک امری ضروری است. در این تحقیق برای پیش­بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل­های سری زمانی و شبکه عصبی استفاده شد. برای مدل­سازی، اطلاعات سطح آب زیرزمینی در طی سال­های 88-1366 استفاده و مدل­های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده­ها برازش داده شد. کارآیی و دقت مدل­های آریما در پیش...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023